本文转自;
◎谢攀科技日报记者付毅飞
年10月9日23时,在我国首次火星探测任务飞行控制团队控制下,天问一号探测器主发动机点火工作余秒,顺利完成深空机动。此次轨道机动在距离地球大约万千米的深空实施。
探测器调姿示意图
探测器深空机动轨道示意图
记者从中国航天科技集团八院了解到,对于“天问一号”火星探测任务,此次变轨意义重大。至此,探测器的飞行轨道变为能够准确被火星捕获的与火星精确相交的轨道。探测器将在当前轨道飞行约4个月后与火星交会,期间将实施两到三次轨道中途修正。
探测器深空机动轨道示意图
深空机动是什么?与轨道修正区别在哪?
航天科技集团八院火星环绕器团队介绍,深空机动是指在地火转移段实施的一次变轨机动。通过深空机动可以改变探测器原有的飞行速度和方向,使其能够沿着变轨后的轨道顺利飞行至火星。
执行深空机动是运载入轨弹道和地火转移轨道联合优化的结果,能够提升运载的发射能力、增加探测器的发射质量,使探测器可以携带更多的推进剂,更好地完成探测任务。与速度增量较小,发动机工作较短的常规中途修正不同,深空机动过程中,探测器由发射入轨的逃逸转移轨道变轨为精确到达火星的轨道,速度增量大,发动机工作时间长,对探测器控制和推进系统提出了极高要求。
深空机动的3大好处
通过使用深空机动进行轨道设计和轨道控制,八院火星环绕器团队不但成功增加了探测器的推进剂携带量,还实现了3方面目标。
首先,深空机动将一个大的捕获速度增量分解为两次相对较小的速度增量,有利于减小发动机单次工作时间,保证发动机工作的可靠性。
同时,深空机动的实施有利于N发动机的标定,过程中可对N大发动机进行推力和比冲标定,而精确的发动机标定参数可以更好地确保火星捕获的精度。
通过深空机动,八院火星环绕器研制团队实现了对探测器到达时间的优化,能够得到更加有利的捕获点处的光照条件和通信条件,也使捕获时探测器经历的火影时间(探测器进入太阳光被火星遮挡的阴影区)和通信盲区时间更短。
如何实现深空机动?
执行深空机动任务需要八院火星环绕器团队根据预定到达火星时间、轨道参数与即时测控定轨参数制定深空机动变轨策略,完成对应的探测器姿态和轨道控制,确保探测器在深空机动后处于与火星精确相交的轨道上。
为了完成地面测控精密定轨和器上精确自主轨道控制,本次深空机动中,地面对探测器的定轨任务由我国深空测控站和天文台共同完成,准确保证了探测器变轨的精密定轨需求。为了能够精确自主控制轨道,火星环绕器装备了高精度陀螺、加速度计以及具备故障识别与自主处理能力的器上计算机,充分保证了轨控的精度和可靠性。
瞄准3亿公里之外
本次深空机动中,环绕器瞄准的制动捕获时火星的位置距离环绕器约3亿公里远,误差控制约公里,相当于北京到上海约1公里距离中瞄准一个直径约0.8米的目标。
在八院火星环绕器团队的不懈努力下,此次深空机动控制的实际精度优于设计指标。
后续,团队将根据探测器实际飞行状态,迭代优化中途修正策略,利用中途修正持续对到达火星的轨道再进行精确修正,保证探测器能够按计划准确进入火星捕获走廊,被火星引力捕获进入环火轨道,开展着陆火星的准备和后续科学探测等工作。
来源:科技日报文中图片由李贵良制作